A Uniform Asymptotic Analysis for Transient Scattered Fields by a Cylindrically Curved Open Surface with Varying Radius of Curvature

Keiji Goto, Toshihide Ajiki, Toru Kawano, and Toyohiko Ishihara
Department of Communication Engineering, National Defense Academy
Hashirimizu, Yokosuka, 239-8686 Japan
E-mail: keigoto@nda.ac.jp

Abstract

The time-domain uniform asymptotic solution (TD-UAS) for the transient scattered field excited by the high-frequency (HF) pulse wave incident on a cylindrically curved open surface with a varying radius of curvature is presented in this paper. The TD-UAS, effective in the transition regions including the geometrical boundaries RB and SB, is constructed by the geometrical rays, the surface diffracted rays, the lowest order adiabatic whispering gallery mode radiation fields, and the combination of these pulse waves. The TD-UAS has an advantage that the total solution can be obtained from the summation of the individual solution which can easily be interpreted physically. We have confirmed the accuracy and the validity of the TD-UAS by comparing with the reference solution calculated from the combination of the method of moment (MoM) and the fast Fourier transform (FFT) code and with the reference solution obtained from the combination of the frequency-domain uniform asymptotic solution (FD-UAS) [8] and the FFT code.

1. INTRODUCTION

Recently, by the technological advances in high-resolution radar and electromagnetic pulses (EMP), it has become important to study the transient electromagnetic field radiated by an antenna or the transient scattered field produced by various objects [1], [2]. In the high-frequency (HF) analysis of the scattered field by an object with a complex shape, it is necessary to study the analysis method by an object with a relatively simple shape or the analysis method for the canonical problem [3]-[5].

The purpose of this paper is to derive the time-domain uniform asymptotic solution (TD-UAS) for the transient scattered field when the HF pulse wave is incident on a cylindrically curved open conducting surface with a varying radius of curvature. The accuracy and the validity of the TD-UAS proposed here are confirmed by comparing with the reference solutions calculated numerically from the combination of the frequency-domain (FD) numerical solution obtained from the method of moment (MoM) [6], [7] and the fast Fourier transform (FFT) code and from the combination of the frequency-domain uniform asymptotic solution (FD-UAS) [8] and the FFT code.

2. FORMULATION

Fig.1 shows the cylindrically curved open conducting surface \(\Omega \) with varying radius of curvature, the curved coordinate system \((s,q)\), the rectangular coordinate system \((x,y,z)\), and the coordinate system \((R,\psi)\). The origin of coordinate system \((x,y,z)\) is chosen to coincide with the vertex point \(O\) of the curved surface \(\Omega\). Note that \(s\) and \(q\) in the coordinate system \((s,q)\) are the distance along the curved surface measured from the point \(O\) and the vertical distance from the curved surface, respectively.

We assume that the radius of curvature \(a(s)\) is sufficiently larger than the wavelength \(\lambda = 2\pi c/\omega\) (\(\omega\) and \(c\) are the...
We will apply the Gaussian-type modulated pulse source \(s(t) \) in (2) with numerical parameters: \(t_0 = 3.14 \times 10^{-10} \), \(d = 6.60 \times 10^{-11} \), and \(\omega_0 = 2.10 \times 10^{15} \). (b) Frequency spectrum \(S(\omega) \) of the source function \(s(t) \), and \(\omega_1 \approx 1.76 \times 10^{15} \) and \(\omega_2 \approx 2.45 \times 10^{15} \).

radian frequency modulating the pulse, and \(t_0 \) and \(d \) the constant parameters. The frequency spectrum \(S(\omega) \) obtained by the Fourier transform of the source function \(s(t) \) is given by

\[
S(\omega) = 2d\sqrt{\pi} \exp \{ i\omega t_0 - \frac{d^2}{2} (\omega - \omega_0)^2 \} \text{Re} \left[\text{erf} \beta(\omega) \right] \tag{3}
\]

where \(\text{Re} \left[\bullet \right] \) denotes the real part of \([\bullet] \). Fig. 3 illustrates the source function \(s(t) \) and its spectrum \(S(\omega) \). The main portion of the frequency spectrum \(S(\omega) \) is distributed in the HF domain approximately from \(\omega = \omega_1 \) to \(\omega = \omega_2 \), so that the integration interval in the inverse Fourier transform (1) can be changed from \((-\infty, \infty)\) to \((\omega_1, \omega_2)\) (see Fig. 3). Then, the FD scattered field \(u_d(\omega) \) in (1) can be evaluated asymptotically under the HF assumption \(\omega a(s)/c >> 1 \). The FD-UAS \(u_{d,\text{mO}}(\omega) \) for \(u_d(\omega) \) can be represented as follows [8]

\[
u_{d,\text{mO}}(\omega) \sim u_{d,\text{c}}(\omega) + u_{d,\text{c}}(\omega) + u_{d,\text{WG}}(\omega) \tag{4}
\]

where \(u_{d,\text{c}}(\omega) \) denotes the geometrical rays (GO) including the refracted ray and the edge, \(u_{d,\text{c}}(\omega) \) the surface diffracted ray (SD) including the edge-SD, and \(u_{d,\text{WG}}(\omega) \) the AWGm radiation fields (see Fig. 2).

After substituting the \(u_{d,\text{mO}}(\omega) \) in (4) into \(u_d(\omega) \) in (1), the integral \(y(t) \) can be evaluated by applying the HF asymptotic analysis methods in 3. While, substituting the FD-numerical solution \(u_{d,\text{MOM}}(\omega) \) obtained from the MoM into \(u_d(\omega) \) in (1), one may obtain the numerical solution \(y_{\text{MOM}}(\omega) \) by applying the FFT code. The numerical solution \(y_{\text{MOM}}(\omega) \) thus obtained serves as the reference solution in 4.

Fig. 2 Single and double edge diffracted rays (single and double-ED), edge-surface diffracted rays (edge-SD) excited either by the edge A or both by the edges A and B. Also shown are geometrical rays (GO) including direct ray and reflected ray, and SD excited on the convex side by source Q.

Fig. 3 Gaussian-type modulated pulse source. (a) Real part of \(s(t) \) in (2) with numerical parameters: \(t_0 = 3.14 \times 10^{-10} \), \(d = 6.60 \times 10^{-11} \), and \(\omega_0 = 2.10 \times 10^{15} \). (b) Frequency spectrum \(S(\omega) \) of the source function \(s(t) \), and \(\omega_1 \approx 1.76 \times 10^{15} \) and \(\omega_2 \approx 2.45 \times 10^{15} \).
3. TIME-DOMAIN UNIFORM ASYMPTOTIC SOLUTION

3.1 Uniform Asymptotic Analysis by Saddle Point Technique

In this section, we will derive the TD-UAS for the GO and the SD. First, let’s take the single-ED (see Fig.4), emanated from the edge A and arriving at the observation point P_4 after reflecting once on the concave boundary, as a simple and good example of $u_{d,1} (\omega)$. Then, the $u_{d,1} (\omega)$ can be represented as follows [8]

$$u_{d,1} (\omega) = G(QA) D_A(\omega, \phi_A, \phi^{\text{in}}_A) G(AR) \sqrt{dA(R)/dA(P_4)} \exp(i\phi_{RP_4} - i\pi/2)$$

where $G(x)$ denotes the 2-D Green’s function

$$G(x) = \frac{i}{4} \sqrt{\omega/c} \exp(i\omega x/c - i\pi/4)$$

and QA (AR) denotes the propagation distance of the ray traveling from the point Q (A) to the point A (R). Henceforth, the distance between the point Q and A is indicated by QA.A.

$D_A(\omega, \phi_A, \phi^{\text{in}}_A)$ is the edge diffraction coefficient for the observation angle ϕ_A and the incident angle ϕ^{in}_A and is given by

$$D_A(\omega, \phi_A, \phi^{\text{in}}_A) = -\frac{F(X^i)}{\cos \phi_A - \phi^{\text{in}}_A} \frac{F(X^r)}{\cos \phi_A + \phi^{\text{in}}_A}$$

$$F(X) = -2i\sqrt{X} \exp(-iX) \int_{-\pi}^{\pi} \exp(i\tau^2) d\tau$$

$$X^i = 2\omega QA \cdot AR \cos^2 \phi_A - \phi^{\text{in}}_A c$$

$$X^r = 2\omega AR + \rho^2 \cos^2 \phi_A + \phi^{\text{in}}_A c$$

In (5), $\sqrt{dA(R)/dA(P_4)} = \sqrt{RF/FP_4}$ denotes the divergence coefficient, $dA(R)$ and $dA(P_4)$ are the ray tube cross sections at R and P_4 (see Fig.4), respectively. $RP_4 = (RF + FP_4)$ is the propagation distance from the reflection point R to P_4. (-\pi/2) phase shift arises from the caustic F. RF is given as follows

$$RF = \frac{AR \cdot a(\omega) \cos \theta^{\text{in}}_A}{2AR - a(\omega) \cos \theta^A}$$

where θ^{in}_A and $a(\omega)$ denote the incident angle and the radius of curvature at the point R, respectively.

The geometrical ray $u_{d,1} (\omega)$ in (5) can be expressed by

$$u_{d,1} (\omega) = A_1(\omega) \exp(i\omega L_4/c)$$

$L_4 = Q \rightarrow A \rightarrow R \rightarrow P_4$ (9a)

where $A_1(\omega)$ is the slowly varying amplitude as the function of curvature at the point R, respectively.

Next, as an example of $u_{d,2} (\omega)$, we will consider the edge-SD propagating along the convex surface after the diffraction by the edge A (see Fig.4). This may be represented as [8]

$$u_{d,2} (\omega) = G(QA) A_2(\omega) \sum_{n=1}^{\infty} \left\{ D_A(\omega, \phi_n, \phi^{\text{in}}_n) \frac{L_n(A)}{2} T_n(A, A_1) \cdot D_n(A_1) \right\} G(A, P_3)$$

$L_n(A) = (2\sigma_n)^{-1/2} (\omega a(\omega)/2c)^{-1/6} \exp(i\pi/12)$

$T_n(A, A_1) = \exp(i\omega \ell_1/(2c) - \Omega_1)$

$\Omega_1 = \sigma_n \exp(-i\pi/6) \int_{\ell_1}^{\ell_n} \frac{M(t')}{a(t')} dt'$

$D_n(A_1) = \sqrt{2(\omega a(A_1)/2c)^{1/6}} \exp(-i\pi/12) \sqrt{\sigma_n A_2}\left(\sigma_1 - \sigma_n\right)$

where $\phi_n (\nu_n = kat(A) \cos \phi_n)$ denotes the eigen value of the nth order CW satisfying the characteristic equation $H^\nu_n(kat(A)) = 0$.

The notations $L_n(A)$, $T_n(A, A_1)$, and $D_n(A_1)$ are the launching coefficient from the edge A, the transmission coefficient from the edge A to the surface diffraction point A_1, and the surface diffraction coefficient at A_1, respectively (see Fig.4). The function $A_2(\omega)$ is the Airy function [13]. $u_{d,2} (\omega)$ in (10) may be represented by the product of $A_2(\omega)$ and the phase term including the total propagation distance L_2 as follows:

$$\rho^2 = \frac{QA \cdot a(\omega) \cos \theta^{\text{in}}_A}{2QA + a(\omega) \cos \theta^A}$$

Fig.4 Single edge diffraction ray (single-ED) reflecting once on the concave boundary after the diffraction by the edge A and the edge surface diffracted ray (edge-SD).
\[u_{j,2}(\omega) = A_j(\omega) \exp(i \omega L_j/c) \]
\[L_j = Q \rightarrow A \rightarrow A_j \rightarrow P \]
(11a)

The notation \(A \rightarrow A_j \rightarrow P \) is used to indicate the CW propagation from \(A \) to \(A_j \) along the arc of the curved surface \(\Omega \).

Substituting \(u_{j,2}(\omega), j = 1, 2 \), in (9) or (11) and \(S(\omega) \) in (3) into the inverse Fourier transform in (1) yields the following TD-integral representation

\[y_j(t) = \frac{d}{dt} s(t - L_j/c) I_j(\gamma), \quad j = 1, 2 \]
(12)

\[I_j(\gamma) = \frac{1}{2\pi} \int_{\omega_0}^{\omega_{0,j}} A_j(\omega') [2(2\pi)]^2 \exp[-i \omega' t - i \omega' L/c] \]
(12a)

\[h_j(\omega') = \left(\omega' - \omega_0' + i(t - t_0 - L_j/c) \right)^2 \]
(12b)

\[\gamma = \frac{1}{2}(4d^2), \quad \omega_0' = 2d^2 \omega_0 \]
(12c)

In obtaining the above representations from (1), the transformation from \(\omega \) to \(\omega' \) via \(\omega' = 2d^2 \omega \) has been performed. Note that \(\omega_{0,1,2} = 2d^2 \omega_0 \).

For the large value of \(\gamma (>>1) \), the integral \(I_j(\gamma) \) in (12a) can be evaluated asymptotically by applying the saddle point technique [11], [12], [14]. The result is given by

\[I_j(\gamma) \sim \frac{\sqrt{\pi}}{d} A_j \left(\frac{\omega_0'}{2d^2} \right) \exp \left[- \frac{(\omega_0')^2}{2d^2} \right] \]
(13)

where \(\omega_{0,j} \) is the saddle point:

\[\omega_{0,j} = \omega_0' - i(t - t_0 - L_j/c) \]
(13a)

in the complex \(\omega' \)-plane determined from the saddle point equation \(\partial \omega' / \partial \omega' \cdot h_j(\omega') = 0 \). Then substituting (13) into (12), the TD-UAS for the GO \(j=1 \) and the SD \(j=2 \) may be represented by

\[y_j(t) = A_j(\omega_{0,j}) \exp[-i \omega_{0,j} t - i \omega_{0,j} L_j/c] \]
(14)

\[\omega_{0,j} = \omega_0' - i(t - t_0 - L_j/c) / (2d^2) \]
(14a)

It is shown in (14) that the transient scattered field propagates with the phase velocity \(c \) and is observed after the total propagation time \(L_j/c \).

3.2 Uniform Asymptotic Analysis by Fourier Transform Method

The solution \(u_{m,\text{WG,m}}(\omega) \) in (4) for the \(m \)th order AWG radiation field from aperture plane at the edge \(B \) can be inferred from the result given in [8], [9], [11] and be represented as follows:

\[u_{m,\text{WG,m}}(\omega) = U(P)u_{m,\gamma}(\omega) + u_{m,\delta}(\omega) \]
(15)

\[u_{m,\gamma}(\omega) = G(QA)D_j(\omega, \phi_\lambda, \phi_\mu, \phi_\nu) G_{m,\gamma}(\omega) \]
(15a)

\[u_{m,\delta}(\omega) = G(QA)D_j(\omega, \phi_\lambda, \phi_\mu, \phi_\nu) G_{m,\delta}(\omega) \]
(15b)

\[G_{m,\gamma}(\omega) = G_\gamma(R)G_\gamma(F) \exp(i\omega T_0 - i\pi/2) \]
(15c)

\[G_\gamma(R) = M_{\gamma,\gamma}(T_j) G_\gamma(R) \]
(15d)

\[M_{\gamma,\gamma}(T_j) = G^\gamma(R) \exp(i\omega d'/c - i\pi/4), \quad d' = \tilde{R} T_0 \]
(15e)

\[G^\gamma(R) = \frac{K_n}{M(A) M(R)} \exp[i\omega T_0 \cdot \tilde{T}_0/c] \]
(15f)

\[K_n = i \left[4 \sigma_n A_1 \sigma(\gamma) \right]^3, \quad M(A) = (\omega a(A)/c)^3 \]
(15g)

\[G_\gamma(P) = u_m(B)D_0(\omega, \phi_\beta, \phi_\phi, \phi_\mu) \]
(15h)

Where \(G(QA) \) and \(D_j(\omega, w_m, w_m) \) are the incident GO (see (5)) and the edge diffraction coefficient (see (7)), respectively, and \(G_{m,\gamma}(\omega) \) denotes the GO converted from the incident modal ray \(G_\gamma(R) \) and arriving at the observation point \(P \). Therefore, \(u_{m,\gamma}(\omega) \) in (15a) denotes the GO (single-ED), converted from AWG, and arriving at the observation point \(P \) located in the illuminated region between RB and SB, with the total propagation time \(L_j/c \).

![Fig.5 AWG radiation field from the aperture plane at the edge B](image-url)
distance $L_{n,m}(\omega)(\equiv Q \rightarrow A \rightarrow T_1 \rightarrow T_2 \rightarrow R \rightarrow P)$ While, $u_{n,j}(\omega)$ in (15b) denotes the edge diffracted ray (double-ED), excited by the incident modal ray $G_n(B)$, with the total propagation distance $L_{n,d}(\omega)(\equiv Q \rightarrow A \rightarrow T_1 \rightarrow T_2 \rightarrow B \rightarrow P$ (see Fig.2). The notation $T_1 \rightarrow T_{1,4}$ denotes the AWG n propagation from T_0 to $T_{1,4}$ along the arc of modal caustic defined by $q=q_n(\omega)=a(s)-\sigma_n(\omega)/2)^{1/2} \cdot (\sigma/c)^{-1/2}$. Note that the total propagation distance $L_{n,j}(\omega)$, $j=go$ or $j=d$, changes as the function of ω.

$U(P)$ in (15) is “one” when the observation point is located in the illuminated region and “zero” when it is in the shadow region. Substituting $u_{n,j}(\omega)$ in (15a) and (15b) and $S(\omega)$ in (3) into (1) yields the following TD-integral representation for the AWG n radiation field [11]

$$y_{n,j}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} A_{n,j}(\omega) S(\omega) \exp[-i\omega(t-L_{n,j}(\omega)/c)] d\omega$$

$$j = go \text{ or } j = d.$$

(16)

Since the total propagation distance $L_{n,j}(\omega)$ changes as the function of ω, it may be difficult to evaluate the integral $y_{n,j}(t)$ asymptotically by applying the saddle point technique. So, we will newly derive the uniform asymptotic solution, from the integral (16), by applying the Fourier transform method [11], [12].

The pulse source function $s(t)$ defined by (2) can be represented as follows

$$s(t) = \exp[-i\omega(t-t_0)]p(t)$$

$$p(t) = \exp[-(t-t_0)^2/(4d^2)].$$

(17a)

(17b)

Denoting the Fourier transform of $p(t)$ by $P(\omega)$, the frequency spectrum $S(\omega)$ in (3) can be represented as follows.

$$S(\omega) = \exp(i\omega t_0)d\nu P(\omega - \omega_0)$$

(18)

$$P(\omega) = 2\sqrt{\pi}d \exp(i\omega t_0 - d^2 \omega^2) \Re\{\text{erf}[(\beta(\omega + \omega_0))]\} \quad (19)$$

Substituting (18) into (16) and evaluating the integral $y_{n,j}(t)$ in (16) by applying the Fourier transform method produce

$$y_{n,j}(t) = A_{n,j}(\omega_0) \exp[-i\omega_0(t-t_0) - L_{n,j}(\omega_0)/c]$$

$$- (t-t_0)^2/L_{n,j}(\omega_0)/c^2 \cdot (4d^2)]$$

(20)

$$v_{e,m,j} = c/2(1 + \omega_0 L_{n,j}(\omega_0)/L_{n,j}(\omega_0)).$$

(20a)

It is shown in (20) that the transient pulse wave for the AWG n radiation field propagates with the phase velocity c and the group velocity $v_{e,m,j}$ given by (20a).

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we perform the numerical calculations necessary to assess the accuracy and the validity of the TD-UAS derived in 3, and to interpret physically the phenomena of the transient scattered field. The pulse plane wave shown in Fig.3 is incident on the convex side of the cylindrically curved open surface Ω (see Fig.6) defined by

$$a(s) = \min [a_0 - \|s\|, 0] \quad (21)$$

where (a_0, a_1) are constant parameters and s_0 the arc length from the vertex point O to the edge A or B.

Fig.7(a) shows the real part of response waveform vs. time curves observed at $(R, \theta) = (0.8 m, 100^\circ)$ (see Fig.1) when the pulse plane wave $s(t)$ is incident on the convex side of the curved surface Ω with the parameters $(a_0, a_1) = (10, 10)$ and $s_0 = 0.096$. The open circles () are the numerical reference solution. The solid curve () shows the numerical result obtained from the combination of the FD-UAS $u_{d,rv}(\omega)$ in (4) and the FFT code (see (1)). The solid curve agrees excellently with the reference solution in the whole region.

Although $y_{\text{num}}(\omega)$ produces the numerical solution for the transient scattered field, it is difficult to separate each pulse individually from the total response waveform. While, $y_{\text{num}}(\omega)$ may be separated easily into each pulse, so that we shall use $y_{\text{num}}(\omega)$ as a new reference solution to assess the TD-UAS derived in 3 (see (14) and (20)). Fig.7(b) shows the pulses constituting the total response waveform in Fig.7(a). The closed circles () show the result of each TD-UAS (see Fig.6). Reflected ray (), single-ED (), double-ED (), edge-SD (), and AWG1 radiation fields (and) agree very well with the new reference solution shown by the solid curve ().
5. CONCLUSION

We have derived the time-domain uniform asymptotic solution (TD-UAS) for the transient scattered field by the cylindrically curved open conducting surface with a varying radius of curvature. The TD-UAS consists of the geometrical rays including the reflected rays and the edge diffracted rays, the surface diffracted rays, and the lowest order WG mode radiation fields, and the combination of these pulse waves. The accuracy and the validity of the TD-UAS proposed here have been confirmed by comparing with the numerical reference solutions obtained from (i) the combination of the method of moment and the FFT code and (ii) the combination of the frequency-domain uniform asymptotic solution and the FFT code. It has been shown that the TD-UAS is effective for physical interpretation of the scattered field since the pulses constituting the response waveform are observed separately.

REFERENCES