A Modified Virtual Array ESPRIT Algorithm Based on Real Signal Subspace

LIU Ning¹, SHI Haoshan², LIU Liping³, and YANG Bo³
¹First Department, First University, Address including country name
²Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an, 710065, China
³Department of Electronics Engineering, Northwestern Polytechnical University, Xi’an, 710072, China

Abstract - A new ESPRIT method based on virtual array in the presence of coherent signals is presented. Using the received dates and its conjugate information, we reconstructed array data matrix. To reduce the complexity of algorithm, a real signal subspace can be obtained by a unitary transformation. Using the modified U-VC-ESPRIT which has small amount of calculation, we estimated DOA of non-circular coherent signal with arbitrary phase without array aperture reduction and effective element loss. The simulation results verified the effectiveness and superiority of the algorithm.

Index Terms — DOA, Virtual Array, Unitary ESPRIT, coherent signals

I. INTRODUCTION

Direction of arrival (DOA) estimation plays an important role in sonar, radar and communications. The non-circular incoming signals such as MASK, BPSK, and AM are widely used in the satellite systems and modern communication systems. Ref.[1] proposed a C-ESPRIT method to estimate DOA in 2004. The method constructed the two sub-arrays which have the maximum elements N by increasing the virtual sensors to estimate DOA of N non-coherent signals using a uniform linear array composed of N sensors. Then based on the ideas of Ref.[1], the researchers proposed some MUSIC methods [2-7] to estimate the DOA of coherent signals. Ref.[8] forms a special data matrix using the conception of C-ESPRIT. The method not only improves the estimation accuracy, but also can detect N-1 coherent signals without aperture loss. However, in 2007 Ref.[9] queries Ref.[1]. He points out that the C-ESPRIT was derived from a rather unrealistic assumption that all the signals should have the same phase shifts. And also He points that this situation has little utility in practice.

This paper proposed a U-VC-Esprit method. By modify the virtual array, the proposed method realized DOA estimation of non circular signals under arbitrary phase shift without array aperture reduction. And in order to further reduce the workload, the method changes the complex filed into real filed by utilizing a unitary transformation matrix.

II. PROPOSED ALGORITHM

Virtual array can be understood as a virtual extension of the actual array that the first sensor as reference, that is showed as Fig.1.

Assuming the first sensor of array receives the K signal is $s_{1k} = e^{-j\omega t}$ at the t time, then the 2 sensor receives the K signal is $s_{2k} = e^{-j\omega t - \frac{2\pi d \cos \theta}{\lambda}}$. So the virtual 2 sensor receives the K signal is $s'_{2k} = e^{-j\omega t - \frac{2\pi d \cos \theta}{\lambda}}$. In the Ref. [1], the C-ESPRIT method should assume that $s_{2k} = s'_{2k}$, where $e^{-j\omega t - \frac{2\pi d \cos \theta}{\lambda}} = (e^{-j\omega t - \frac{2\pi d \cos \theta}{\lambda}})^t$.

$$e^{-j\omega t + \frac{2\pi d \cos \theta}{\lambda}} = e^{j\omega t - \frac{2\pi d \cos \theta}{\lambda}}$$

It is clear that this assumption is completely unrealistic.

A. virtual array constructed

ESPRIT stands for Estimation of Signal Parameters via Rotational Invariance Techniques which required two subarrays. The two subarray must be same and the distance between the two subarrays must be known. When the signal does not satisfy the real time domain features, that is $s_{1k} = s'_{2k}$, a virtual array that is different from Fig.1 is constructed.

(example for 6 sensors of array)

To estimate DOA of coherent signals, the two subarrays is constructed as Fig.3. We can get from Fig.3 that the two subarrays have the same construction and the distance between the two subarrays is fixed that is distance of two sensors.
B. DOA estimation of real signal subspace

The ESPRIT decomposes the covariance matrix to get the signal subspace or noise subspace. But those processing are all in complex domain. We can reduce the workload by utilizing a unitary transformation transform complex domain to real domain.

A \(N \times N \) unitary transformation \(U \) is defined which can transform covariance matrix of complex domain \(R_N \) to covariance matrix of real domain \(PR \).

\[
PR = U^H R_N U
\]

(1)

when the dimension of \(R_N \) is even, the unitary matrix \(U \) can be written as

\[
U = \frac{1}{\sqrt{2}} \begin{bmatrix} I & jI \\ J & -jI \end{bmatrix}
\]

(2)

where \(J \) represent the exchange matrix with one’s in its anti-diagonal and zeros elsewhere, I represent the exchange matrix with one’s in its diagonal and zeros elsewhere.

In Eq. (2), J and I are exchange and identity matrix with dimension \(N/2 \times N/2 \). In Eq. (3), J and I are exchange and identity matrix with dimension \(((N-1)/2) \times ((N-1)/2) \). then we can use TLS-ESPRIT to estimate DOA of signal.

\[
U = \frac{1}{\sqrt{2}} \begin{bmatrix} I & 0 & jI \\ 0 & \sqrt{2} & 0 \\ J & 0 & -jI \end{bmatrix}
\]

(3)

IV. CONCLUSION

This paper proposed a new de-coherent ESPRIT method based on reconstruction virtual array. The proposed method can effectively estimate DOA of non circular signals with arbitrary initial phase. And this method utilizes the unitary transformation to reduce the workload without scarifying the accuracy of DOA estimation.

ACKNOWLEDGMENT

The work was supported by basic research foundation of NWPU(3102014KYJD014).

REFERENCES

