Design of Butler Matrix Integrated with Antenna Array for Beam Forming

Fitri Yuli Zulkifli1, Nurul Chasanah2, Basari3, dan Eko Tjipto Rahardjo4

1,2,3,4Antenna, Propagation and Microwave Research Group (AMRG)
Dept. of Electrical Engineering, Faculty of Engineering, Universitas Indonesia
Kampus Baru UI Depok, Indonesia
Email: yuli@eng.ui.ac.id, nurul.chasanah@ui.ac.id, basyarie@eng.ui.ac.id, eko@eng.ui.ac.id

Abstract—This paper presents a 4x4 Butler matrix as a beamforming network that is combined with a 4-elements linear aperture coupled antenna arrays to produce four narrow steerable beams. The designed array is aimed to obtain a operating frequency at 2350 MHz for LTE applications by using the Advance Design System (ADS) and CST Microwave Studio. The measurement result shows that the bandwidth for each port is more than 100 MHz. the isolation between ports in the range frequency 2.3 – 2.4 GHz is more than 20 dB. When port 1, 2, 3, or 4 is activated, the beamwidth of the array is 33.8°, 39.8°, 40.3° and 35.6° with the gain is about 6.11 dBi, 3.94 dBi, 4 dBi, and 6.05 dBi, respectively. The main beam of the array in azimuth direction is tilted to -20°, 40°, -40°, and 20° for respective input port.

Keywords: Antenna array, Butler matrix, beam forming, switched beam system

I. INTRODUCTION

Smart antenna is one of the most potential technologies that will enable a higher capacity in wireless networks by effectively reducing multipath and co-channel interference. This is achieved by focusing the radiation only to the desired direction and adjusting itself to changing traffic conditions or signal environments. Smart antennas employ a set of radiating elements arranged in the form of an array. Basically, there are two types of smart antenna system, the switched beam system and adaptive array system [1].

In the switched beam system, there are some techniques to constructed analog beam forming network, such as Blas matrix, Rotmans lens, Nolen matrix, and Butler matrix [5]. One of the most common technique used in switched beam system with linear array antenna is the Butler matrix because it is simple, able to generates high directivity orthogonal narrow beamwidth [6] and it can achieve continuous beam scanning without any mechanical motion [7]. It also does not utilize any active devices such as PIN diodes to maintain low cost. The Butler matrix is a passive feed network which utilizes hybrid couplers, phase shifters and crossovers to provide differential phase shifts at the input of antenna elements in the array [1].

II. BUTLER MATRIX INTEGRATED WITH ANTENNA ARRAY

For design of the Butler matrix, the major components, such as, hybrid coupler, crossover, and phase shifter, needs to be designed and analyzed separately.

A. 4x4 Butler Matrix Design

The designed 3-dB hybrid coupler, crossover, and phase shifter are combined together to achieve a 4x4 Butler matrix using single-layer microstrip line, as shown in Fig. 1, with a total area of 16×28 cm. This structure was implemented and simulated using ADS software. The distance between output ports is arranged to qualify as the effective distance of antenna, for this case the distance is 0.5λ between outputs.
The simulated transmission coefficients are around -9 dB. The value of 9 dB means that the power of the port 1 has been divided equally between the four output ports. The isolation of port 1 when the other input ports are matched with a resistance of 50 \(\Omega \), is shown in Fig. 2(b). It can be noted that the isolation losses between input ports is better than -25 dB from 2.3 GHz to 2.5 GHz.

B. Butler matrix integrated with Antenna Array Design

The single element of the aperture coupled antenna has been designed in [11] with the dielectric constant is 4 and 0.2 for loss tangent. The antenna design using FR4 substrate consists of 2 layers with different thickness of 1.6 mm and 0.8 mm. The Butler matrix that has been designed in section A is integrated with the antenna array that has inter-element spacing about half wavelength to achieve maximum gain and low mutual coupling. Fig. 3 shows the exploded view of the Butler matrix integrated with the antenna array. From Figure 3(a) the upper layer shows the patch antenna without conductor behind the layer. The thickness of this layer is 1.6 mm. The top of the second layer is the ground plane of the with dumbbell shape slots. This dumbbell shape slot or coupling aperture is used for medium propagation of the electromagnetic wave from feed line to the patch. From Figure 3(b) the back view of the design can be seen and shows the second layer with 0.8 mm thickness. The backside of this layer contains the design of Butler matrix.

Simulation result shows that the antenna works at 2.3 – 2.4 GHz (VSWR \(\leq 2 \)), with bandwidth more than 100 MHz. This antenna also has an isolation loss between ports below -20 dB and has gain from 4 to 6 dBi.

Figure 1. Layout 4x4 Butler matrix

From Fig. 1, the design of the Butler matrix, which provides the phase differences, is given in Table I.

<table>
<thead>
<tr>
<th>Output Port</th>
<th>Port 1</th>
<th>Port 2</th>
<th>Port 3</th>
<th>Port 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 5</td>
<td>-45°</td>
<td>-135°</td>
<td>-90°</td>
<td>-180°</td>
</tr>
<tr>
<td>Port 6</td>
<td>-90°</td>
<td>0°</td>
<td>-225°</td>
<td>-135°</td>
</tr>
<tr>
<td>Port 7</td>
<td>-135°</td>
<td>-225°</td>
<td>0°</td>
<td>-90°</td>
</tr>
<tr>
<td>Port 8</td>
<td>-180°</td>
<td>-90°</td>
<td>-135°</td>
<td>-45°</td>
</tr>
<tr>
<td>Phase difference between output ports</td>
<td>-45°</td>
<td>135°</td>
<td>-135°</td>
<td>45°</td>
</tr>
</tbody>
</table>

Figure 2. S-Parameter of 4x4 Butler matrix

- (a) Insertion loss and return loss for port 1
- (b) Isolation of the input port
III. RESULTS AND DISCUSSION

The fabricated Butler matrix integrated with antenna array is shown in Fig 4. Its dimension is 280x260 mm.

The measurement of the antenna was conducted in anechoic chamber at Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia.

A. Reflection Coefficient Measurement

The measurement result, which compared to simulation result of the reflection coefficient, is shown in Figure 5. The coefficient reflection when port 1 or 4 is activated is -26 dB, while when port 2 and 3 is activated is -15 dB. The frequency range for this design is 2.2 – 2.4 GHz with the impedance bandwidth of 200 MHz.

B. Isolation Losses Measurement

Fig. 6 shows the measurement result of the isolation loss between ports in the range frequency 2.3 – 2.4 GHz. The result shows that the isolation loss for all ports is below -20 dB.

C. Radiation Pattern Measurement

The E-field radiation pattern comparison between measurement and simulation result of the Butler matrix integrated with antenna array is shown in Figure 7. The radiation pattern is measured at frequency of 2.35 GHz.
Figure 7. Measured and simulated results of radiation pattern (a) port 1 is fed (b) port 2 is fed (c) port 3 is fed (d) port 4 is fed.

Figure 7 shows the main beam direction at port 1, 2, 3, and 4 is -20°, 40°, -40°, and 20°, respectively. The half power beamwidth is 33.8°, 39.8°, 40.3°, and 35.6°, respectively.

In addition, the antenna gain was measured from 2.3 GHz until 2.4 GHz for all ports. From the measurement result at the center frequency 2.35 GHz, the gain of port 1, 2, 3, and 4 are 6.11 dB, 3.94 dB, 4.01 dB, and 6.04 dB, respectively.

All of the measurement results show similar results compared to the simulation result. The slight difference occurred due to imperfect fabrication of the antenna. The design can be further improved in terms of insertion losses and efficiency by using a low loss substrate instead of FR4. Phase error can be mitigated by using tunable phase shifters.

IV. CONCLUSION

In this paper, the simulation and measurement result of a 4x4 Butler matrix integrated with antenna array for range frequency 2.3 – 2.4 GHz has been presented. The bandwidth for each port is more than 100 MHz. Isolation loss in that frequency range is from -20 dB until -62 dB. The measurement result at 2.35 GHz shows that when port 1, 2, 3, or 4 is activated, the beamwidth is 33.8°, 39.8°, 40.3°, and 35.6° with gain 6.11 dB, 3.94 dB, 4.01 dB, and 6.05 dB, respectively.

ACKNOWLEDGMENT

This research was partially supported by Directorate General of Higher Education of Ministry of Research and Technology, Republic of Indonesia Program “Hibah Penelitian Kompetensi” with contract no: 0426/UN2.R12/HKP.05.00/2015

REFERENCES

[8] Nhi T. Pham, Gye-An Lee and Franco De Flaviis, “Microstrip Antenna Array with Beamforming Network for WLAN Application”, Dept. of Electrical and Computer science, University of California, USA.